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Abstract 
 
The chirplet transform is the generalization form of fast Fourier Transform, short-time Fourier transform, 
and wavelet transform. It has the most flexible time frequency window and successfully used in practices. 
However, the chirplet transform has not inherent inverse transform, and can not overcome the signal recon-
structing problem. In this paper, we proposed the improved chirplet transform (ICT) and constructed the in-
verse ICT. Finally, by simulating the harmonic voltages, the power of the improved chirplet transform are 
illustrated for harmonic detection. The contours clearly showed the harmonic occurrence time and harmonic 
duration. 
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1. Introduction 
 
In many power quality analysis and disciplines, the con-
cept of a stationary time series is a mathematical ideali-
zation that is never realized and is not particularly useful 
in the detection of power quality disturbances in power 
systems. Although the Fourier transform of the entire 
time series does contain information about the spectral 
components in a time series, for a large class of practical 
applications such as voltage signals in power systems, 
this information is inadequate. So in the year of 1996, 
Stockwell, Mansinha and Lowe presented a new S trans-
form that provides a joint time-frequency representation 
(TFR) with frequency-dependent resolution [1] while, at 
the same time, maintaining the direct relationship, 
through time-averaging, with the Fourier spectrum. Sev-
eral have been proposed in the past; among them are the 
Gabor transform [2], the related short-time Fourier trans-
forms [3], the continuous wavelet transform (CWT) [4], 
and the bilinear class of time-frequency distributions 
known as Cohen’s class [5], of which the Wigner distri-
bution [6] is a member. The S transform was defined as 
following [1]. 
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where  H f  is the Fourier transform of  h t . It fol-
lows that  h t  is exactly recoverable from  ,S f . 
Thus 
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The S-transforms have successfully been used in 
power system disturbance detection and identification [7]. 
Another time-frequency representation, Chirplet trans-
form (CT), was defined by Mann Steven in 1992 [8]. 
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From (4), it is easy to show that Chirplet transform is 
an extension of Gabor transform, short-time Fourier 
transform and continuous wavelet transform, furthermore, 
the time-frequency window of CT is more flexible than 
that of CWT. CT has been used successfully to classify 
power quality disturbance (including voltage sag, voltage 
swell, voltage interruption, and linear time-varying har-
monics and nonlinear time-varying harmonics) [9], de-
noise the motor fault signals [10], and detect slight fault 
of electrical machines [11]. 



G.-S. HU  ET  AL. 
 
108 



, d .

However, CT does not satisfy basic characters (2) and 
(3) and inconvenience in practical applications. So, in 
this paper, we present an improved Chirplet transform 
satisfying (2) and (3), moreover, the novel Chirplet 
transform is an extension of the S-transform. 

This paper is organized as follows. The improved 
Chirplet transform is presented in Section 2, and the nu-
merical algorithm is introduced in Section 3; Several 
simulated power quality harmonic waveforms are de-
tected and identified using the proposed method in Sec-
tion 4; Finally, The conclusions and references are given. 
 
2. The Improved Chirplet Transform 
 
Chirplet transform is considered as the “phase correc-
tion” of the CWT. The CWT  of a function 

 is defined by [4] 
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where  is a scaled replica of the fundamental 
mother wavelet. The dilation a determines the “width” of 
the wavelet  and thus controls the resolution. 
Along with (5), there exists an admissibility condition on 
the mother wavelet  [4] that  must have 
zero mean. 
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The improved chirplet transform of a function  h t  
is defined as a CWT with a specific mother wavelet de-
fined as 
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note that the frequency f and constant q. 
The improved chirplet wavelet in (6) does not satisfy 

the condition of zero mean for an admissible wavelet; 
therefore, it is not strictly a CWT, Written out explicitly, 
the improved chirplet transform is 
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It is obvious that Equation (7) degenerates to be an 
S-transform as  [1]. 0q 

If the improved chirplet transform is indeed a repre-
sentation of the local spectrum, one would expect a sim-
ple operation of averaging the local spectra over time to 
give the Fourier spectrum. It is shown as follows 
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Then (9) is the inverse of the above equation. 
Alike FFT, STFT, WT, and CT, the improved chirplet 

transform has the linear property. This is an advantage 
over the bilinear class of time-frequency representations 
(TFR’s). The presence of the cross terms makes it diffi-
cult to reliably estimate the signal. The improved chirplet 
transform can be written as operations on the Fourier 
spectrum  H f  of  h t  
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The discrete analog of (11) is used to compute the dis-
crete improved chirplet transform by taking advantage of 
the efficiency of the Fast Fourier transform (FFT) and 
the convolution theorem. 
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3. The Discrete Improved Chirplet    
Transform  
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with , and ,j m 0,1, 2, , 1n N  . The discrete im-
proved chirplet transform suffers the familiar problems 
from sampling and finite length, giving rise to implicit 
periodicity in the time and frequency domains. The dis-
crete inverse of the improved chirplet transforms (13) 
and (14) is 

Let  h kT ,  denote a discrete time 
series corresponding to signal  with a time sam-
pling interval of T. The discrete Fourier transform is 
given by 
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vectors. The spanning vectors are not orthogonal, and the 
elements of the improved chirplet transform are not in-
dependent. Each basis vector (of the Fourier transform) 
is divided into localized vectors by an element- 
by-element product with the N shifted Gaussians such 
that the sum of these N localized vectors is the original 
basis vector. 
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4. Examples 
 
4.1. The Signal TFR Figure Using the Improved 

Chirplet Transform 
 

Using (11), the improved chirplet transform of a dis-
crete time series  h kT  is given by (letting f n NT  
and )  jT  
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Equations (7) and (9) are the improved chirplet transform 
(ICT) for the time-frequency representation (TFR) and 
its inverse ICT for the signal reconstruction. In the fol-
low figures, Figure 1(a) is the A-phase current signal of 
the inductor motor with single phase grounding. Figure 
2(b) shows the TFR of the A-phase current signal of the 
motor using (7). The reconstruction signal using (9) is 
illustrate in Figure 2(c). From Figure 1, we know (7) 
and (9) are very effective for representing a time fre-
quency feature of a signal and reconstructing from TFR. 

where , . For the , it is equal to 
the constant defined as 

0n   2
q q NT 0n 

 

 

Figure 1. The motor A-phase current signal (a), its TFR (b), and the reconstructing signal. 
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4.2. The harmonics Detection 
 
Figures 2 and 3 demonstrate the class of time series for 
which the improved chirplet transform would be useful; 

they highlight the advantages of such an approach as 
compared with other techniques. 

Considering a simulating segment harmonic voltage 
with zero initial phase as follows. 
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350 Hz 
150 Hz 50 + 0.2t Hz 

50 Hz 

Figure 2. The simulating voltage with zero initial phase (a), and its ICT contour (b). 

 

 

50 + 0.2t Hz 

350 Hz 

150 Hz 

50 Hz 

Figure 3. The simulating voltage with pi/3 initial phase (a), and its ICT contour (b). 
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The voltage signal divided into 5 time segments. In the 
first time interval, the voltage constrains only a fre-
quency: 50 Hz. At time 0.3, the voltage constrains an-
other harmonic: 150 Hz. In the time interval 0.6 1.4t  , 
the voltage constrains a linear time changing harmonic. 
Then at 1.4 s, the harmonic, 350 Hz, added to the signal. 
Finally, the voltage retain normally at 1.7 s.  

The sampling frequency is 1000 Hz. Figure 2 (a) is 
the improved chirplet transform plot of (16). Figure 2(b) 
is the contour plot of the signal (a) using (13) and (14). 
Form Figure 2(b), we find the ICT contour illustrates the 
work frequency 50 Hz, two harmonic frequency 150 Hz 
and 350 Hz, and the linear time changing frequency 50 + 
0.2 t Hz.  

Moreover, the contour in Figure 2(b) clearly shows 
the harmonic occurrence times and durations. 

In order to investigate the influence of initial phase, 
we modulating the above simulating voltage signal with 
pi/3 phase. From Figure 3, we find that the initial phase 
does not influence the harmonic detection. 
 
5. Conclusions 
 
The chirplet transform is the generalization form of fast 
Fourier transform, short-time Fourier transform, and 
wavelet transform. It has the most flexible time fre-
quency window and successfully used in practices. 
However, the chirplet transform has not inherent recon-
structing formulae. So we proposed the improved chir-
plet transform (ICT) and constructed the inverse ICT. 
Finally, the power of the improved chirplet transform is 
apparent from the above examples. 
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